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Numerical study of Lyapunov exponents for products of correlated random matrices
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We numerically study Lyapunov spectra and the maximal Lyapunov exponent~MLE! in products of real
symplectic correlated random matrices, each of which is generated by a modified Bernoulli map. We can
systematically investigate the influence of the correlation on the Lyapunov exponents because the statistical
properties of the sequence generated by the map, whose correlation function shows power-law decay, have
been well investigated. It is shown that the form of the scaled Lyapunov spectra does not change much even
if the correlation of the sequence increases in the stationary region, and in the nonstationary region the forms
are quite different from those obtained in thed-correlated purely random case. The fluctuation strength
dependence of the MLE changes with increasing correlation, and a different scaling law from that of the
d-correlated case can be observed in the nonstationary region. Moreover, the statistical properties of the
probability distribution of the local Lyapunov exponents are quite different from those obtained from
d-correlated random matrices. Slower convergence that does not obey the central-limit theorem is observed for
increasing correlation.
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I. INTRODUCTION

Many physical problems are related to the study of
asymptotic behavior of products of random matrices~PRMs!
@1–3#. Examples are localization of lattices vibration in di
ordered lattices@4–6#, localization of quantum particles in
disordered systems@5,7,8#, the random Ising model of ferro
magnetic materials@9,10#, instability of dynamical systems
@11–19#, and the problem of directed polymers in a rando
medium@20#.

Some mathematicians have given rigorous results
PRMs. The pioneering work of Fursternberg gives a law
large numbers of matrices belonging to noncompact se
simple Lie groups@21#. Oseledec proved a multiplicative e
godic theorem that ensures the existence of the Lyapu
exponents in independent identically distributed~i.i.d.!
random symplectic matrices@22#. Tutubalin showed
that the asymptotic probability distributionPm(R) of
d-correlated PRMs of unitary group for largem, whereR
5MmMm21•••M2M1 are PRMs, converges to a Gaussi
distribution @23#. Virster generalized the results obtained
Tutubalin to arbitrary groups with noncompact connected
misimple Lie groups, such as SU(N,N) @24#. These theorems
correspond to the central-limit theorem~CLT! in PRMs. The
CLT on the group SU(N,N), which shows the existence o
the probability distributionPm(R) in the largem limit, has
been given by some authors@25–27#. Newman was able to
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give a closed expression for all the Lyapunov expone
when the matrix elements were distributed according t
Gaussian distribution, for largeN3N matrix products
@28,29#.

Physicists have carefully applied these mathematical
sults to some physics problems. Matsuda and Ishii rela
Furstenberg’s theorem to localization problems in on
dimensional disordered systems@4#. Kissel @30# derived the
Lyapunov exponents in multichannel localization as a fu
tion of the transmission matrix by using the Oseledec th
rem @22#. O’Connor proved the CLT for the amplitudes o
plane waves traveling in a semi-infinite isotropic disorder
harmonic chain, and it has been applied to the problem
heat conduction in disordered harmonic chains@26#. In all
the cases mentioned above, products of independently
tributed matrices, i.e.,d-correlated matrices, were dealt with
However, the asymptotic properties for correlated PRMs
also interesting problems in physics. We will investiga
properties of correlated PRMs in the present paper.

In classical dynamical systems with many degrees of fr
dom, the instability of the tangent vector of the trajector
plays an important role when we consider the statistical m
chanics of the system. Lyapunov exponents, which are
exponential growth of the vectors along the trajectories,
be numerically estimated from products of real symplec
matrices, and the statistical properties of the Lyapunov
ponents depend on the statistical properties of the time se
of the fluctuation of the matrix elements@3,28#. Moreover, it
is well known that 1/f type fluctuation in the power spec
trum, corresponding to the existence of long-time corre
tion, is observed in the time dependence of some phys
quantities, such as the total and one-particle potential ene
in many kinds of dynamical systems. For example, Fukam
chi showed the 1/f type fluctuation of the FPU model@31#.

o,
.
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HIROAKI YAMADA AND TSUNEYASU OKABE PHYSICAL REVIEW E 63 026203
Okabe and Yamada also observed a similar fluctuation
one-dimensional Lennard-Jones system@32#. These results
show that a variety of dynamical behaviors can be obser
in a dynamical system due to correlation that is differe
from d-correlated motion in random processes. Correlat
effects in some dynamical systems have also been repo
in different contexts@33–35#. Some authors have pointed o
the importance of correlation effects of dynamical syste
for Lyapunov spectra and the scaling form of the maxim
Lyapunov exponent, in comparison withd-correlated ran-
dom matrix products.

However, the statistical properties of the products of c
related random matrices have not been studied, except
few numerical studies@36–38,41#. Crisantiet al. investigated
the correlation effects on dynamical instability and showe
discrepancy between the dynamical system and the ran
matrix approximation~RMA! due to correlation in low-
dimensional maps@16,3#. Yamadaet al. have shown for
products of 232 matrices that the convergent properties
the probability distribution of the transmission rate with r
spect to the system size do not obey the CLT; they h
slower convergence because of the correlation of the
quence, in the context of a one-dimensional disordered
tem with long-range structural correlation@36#. Oliver and
Petri gave exact expressions for the Lyapunov exponent
correlated PRMs with Markovian rules@38#. It is worth not-
ing that a one-dimensional disordered system with o
diagonal randomness can be expressed by PRMs with M
kovian rules. Goda showed analytically that Furstenber
convergence theorem is applicable to this case@39#.

Moreover, it has been detected that the matrix eleme
show a certain degree of correlation in the fluctuation of
time evolution in some dynamical systems@32,40#. Accord-
ingly, to investigate systematically the effect of correlati
on some statistical properties of the PRMs may give us
information for dynamical systems. Yamaguchi investiga
the effects of exponential correlation on the shape
Lyapunov spectra by changing the correlation length in o
dimensional nonlinear chains@41#. It has been shown tha
exponential correlation changes the shape of the Lyapu
spectra from linear to curved. Okabe and Yamada gav
preliminary report on correlation effects on Lyapunov sp
tra and the scaling form of the maximal Lyapunov expon
~MLE! @42# where the correlated sequences are generate
a modified Bernoulli map~see below!.

In this paper, we study numerically some asympto
properties of Lyapunov exponents in products of symple
random matrices with long-range correlation, each of wh
is produced by a modified Bernoulli map@43–45#. We give
results by more systematic investigation for wider ranges
parameters than in our preliminary report@42#. The modified
Bernoulli map generates correlated sequences in which
correlation function decays obeying an inverse power la
i.e., the correlation length is infinite. The statistical prop
ties of the sequence of the modified Bernoulli map have b
well studied by Aizawaet al. @43,44#, who used the map in
order to reveal the statistical properties of intermittent cha
Thus we can systematically investigate the influence of c
relation on the Lyapunov spectra, the scaling form of
02620
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MLE, and the statistical properties of the probability dist
bution of local Lyapunov exponents@42#.

We found some interesting results for the correlation
fect on Lyapunov exponents. For example, in dynami
models, with increase of correlation all the Lyapunov exp
nents increase in the stationary region. On the other hand
the nonstationary region the MLE increases with increase
the correlation, but the smaller Lyapunov exponents begin
decrease. Moreover, we observed a clear scaling law for
maximal Lyapunov exponent,l1(e);eb, where depending
on the correlation the exponentb takes intermediate value
between 2/3 and 1/2 in the stationary region. In the non
tionary region, however, the correlation does not greatly
fect the scaling form of the MLEl1. In comparison with the
RMA, the slower convergent properties of the probabil
distribution with respect to time are well observed. The d
tails of the numerical results are given in the present pap

This paper is constructed as follows. In the next secti
we introduce three kinds of the symplectic matrix form w
use. Two of them are based on interacting classical parti
in one dimension. We refer to them as form A and form B.
the text of this paper we mainly focus on form A. The ca
for form B is mainly shown in Sec. VIII. We also give re
sults for another matrix form~form C! based on localization
in quasi-one-dimensional disordered systems in Sec. VII

In Sec. III, we introduce the modified Bernoulli map th
generates the correlated sequence. We mainly use two t
of symbolic sequence which take only two values 0 ore
~type 1! and 2e/2 or e/2 ~type 2!, where e means the
strength of the fluctuation. We investigate some propertie
the Lyapunov exponents for some cases by changing
combination of the above three kinds of matrix form and tw
kinds of distribution.~See Table I.!

In Sec. IV, we give a definition and brief explanation
the Lyapunov exponents and local Lyapunov exponents
used in this paper. We give numerical results for the ma
form A in Secs. V, VI, and VII.

In Sec. V, we investigate the Lyapunov spectra for mat
form A with two kinds of probability distribution. It has bee
shown that scaled Lyapunov spectraLS(x), x5 i /N, become
linear, i.e.,LS(x)}12x, in the limit N→` in the case of
PRMs with no correlation or a strongly chaotic regime@3#. In
the stationary region, the form of the Lyapunov spectra d
not greatly depend on the strength of the correlation and
dependence is quasilinear. It will be shown that in the n
stationary region the forms of Lyapunov spectra beco
curved, depending on the strength of the correlation.

In Sec. VI, we investigate the dependence of the MLE
the l1(e), fluctuation strengthe, for various cases of com
bination of the matrix form and symbolized type. In th

TABLE I. The classification of cases by combination of thr
matrix forms and two symbolic types that we use in the pres
paper.

Form A B C

Type 1 ~0 or e) case A1 case B1 case C1
Type 2 (2e/2 or e/2) case A2 case B2 case C2
3-2
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NUMERICAL STUDY OF LYAPUNOV EXPONENTS FOR . . . PHYSICAL REVIEW E63 026203
RMA l1(e);e2/3 is shown in the weak disorder limit b
using analytical methods, such as the weak disorder ex
sion and replica trick and so on@3#. We showed that the
scaling forml1(e) becomes different from that in the RMA
in the nonsymbolic model in which the sequence takes
ues in the interval@0,e# or @2e/2,e/2# in our preliminary
report @42#. We show some interesting scaling formsl1(e)
for the discretized~two-value! version in the present paper

In Sec. VII, the statistical properties of the probabili
distribution of the local MLE are investigated. Section VI
contains some numerical results in the other cases of m
forms B and C. The last section is devoted to summary
discussion.

II. MATRIX FORMS

In this section, we introduce the matrix forms and so
terminology we use hereafter, based on Hamiltonian dyna
cal systems. Although we do not treat the Hamiltonian s
tem itself in the present paper, this is convenient for read
when they consider the background of this problem.

We consider a one-dimensional classical many-body s
tem with N degrees of freedom in order to set the mat
form, in which the 2N-dimensional phase space consi
of generalized coordinates and momen
(p1 , . . . ,pN , q1 , . . . ,qN). In general, the HamiltonianH
5( i 51

N pi
2/21Utot(q1 , . . . ,qN) describes a one-dimension

system obeying classical dynamics. In the Hamilton syst
he

n

n
to

ica
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Lyapunov exponents, which are indices of instability of t
trajectory in phase space, can be calculated by the t
evolution of an infinitesimally perturbed vecto
dz(t)5„dp1(t), . . . ,dpN(t), dq1(t), . . . ,dqN(t)… in
2N-dimensional tangent space@3,46,47#. The discrete time
evolution of the system is given by

Z~ t5ndt !5)
i 51

n

S( i )Z~0![P~ t !Z~0!, ~2.1!

where the matrixS( i ) is a real symplectic Jacobian matrix fo
dt time evolution andZ(0) is a 2N-dimensional arbitrary
real orthogonal matrix. The matrix can be determined o
by coordinatesq(t) obtained as the solution of the equatio
of motion. Then the form of the symplectic matrices is@3#

S( i )5S I dtI

2dtH( i ) I2dt2H( i )D , ~2.2!

whereI andH( i ) areN-dimensional unit and real symmetri
~Hessian! matrices, respectively. First, we adopt the Hess
matrix of a one-dimensional dynamical system with neare
neighbor interaction and periodic boundary conditions as
matrix form ofH( i ). Accordingly, the sum of each row mus
be zero, and so is that of each column,( l 51

N H( i )
lk50, k

51, . . . ,N, based on the conservation of the momentum.
a result, the matrix form ofH( i ) becomes tridiagonal with
two corner elements as follows:
H( i )5S vN11v12 2v12 0 ••• 0 2v1N

2v12 v121v23 2v23 0 � 0

0 2v23 v231v34 � � A

A � � � � 0

0 � � � � 2vN21N

2v1N 0 ••• 0 2vN21N vN21N1vN1

D , ~2.3!
al
l-

rix

are
om
.
dy-
ch
the

-

el
hro
where the$H i j % are given by second partial derivatives of t
total potential energy,

v i i 1152
]2Utot~q1 , . . . ,qN!

]qi]qi 11
. ~2.4!

See Refs.@47,32# for details.
In the RMA matrix elements$v j j 11% ’s are i.i.d. random

variables with an appropriate density function, such as u
form distribution in an interval@2e/2,e/2#. e is a parameter
that controls the strength of the fluctuation~or randomness!.
Moreover, we consider another case in which the diago
elements are positive definite values, which corresponds
typical high energy state in a one-dimensional dynam
system. Indeed, we used a distribution range@0,e# in our
i-

al
a
l

previous report@42#. As we noted in Sec. I, here we de
with two types of a symbolic distribution that takes two va
ues.~See Sec. III.!

Before closing this section let us introduce other mat
forms which were not investigated in@42#. One of them is a
case in which all of the matrix elements of the Hessian
random variables. Then the number of independent rand
variables becomesN(N11)/2 because of the symmetry
This corresponds, for example, to a one-dimensional
namical system with interaction between all particles, su
as a coupled map system with cosine potential except in
conservation law@48,33#. We refer to this form of the Hes
sian matrix as form B and deal with it in Sec. VIII.

Another matrix form comes from the tight binding mod
of a quasi one-dimensional disordered system. The Sc¨-
dinger equation of the system isCnm111Cnm211Cn21m
1Cn11m1VnmCnm5ECnm , whereCnm , Vnm , andE are
3-3
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HIROAKI YAMADA AND TSUNEYASU OKABE PHYSICAL REVIEW E 63 026203
the wave function, the potential on the site (n,m), and the
energy of the system. The equation can be written in rec
sive form,

Z~n!5)
i 51

n

S( i )Z~0![P~n!Z~0!, ~2.5!

where „Z(n)…t5(Cn1 , . . . ,CnN ,Cn211, . . . ,Cn21N). In
periodic boundary conditions the matrix formS( i ) is given as

S( i )5S EI2H( i ) 2I

I 0 D , ~2.6!

where0 is anN-dimensional null matrix.E denotes the en
ergy of an electron injected into the system from a perf
conductor on the left side, andH( i ) is the Hamiltonian of the
i th slice of the two-dimensional strip. The matrix form
H( i ) becomes tridiagonal with two corner elements as f
lows:

H( i )5S Vi1 1 0 ••• 0 1

1 Vi2 1 0 ••• 0

0 1 Vi3 1 ••• 0

A A � � � �

1 0 0 ••• 1 ViN

D . ~2.7!

In this case the number of random variables isN, and theS( i )

becomes a symplectic matrix. We refer to this matrix form
form C and deal with it in Sec. VIII. The PRM is directl
related to conductance in a quasi-one-dimensional electr
system. See Refs.@49–52# for the details.

Finally, in this paper we mainly treat some cases given
combinations of the three kinds of matrix form, i.e., A,
and C, and two kinds of symbolization rules, i.e., types 1 a
2. ~See Table I.!

III. MODIFIED BERNOULLI MAP

In this section we briefly review the modified Bernou
map and the statistical properties of the sequence. The m

Xi 115H Xi12B21~122b!Xi
B1b ~0<Xi,1/2!

Xi22B21~122b!~12Xi !
B1b ~1/2<Xi<1!,

~3.1!

whereB is a bifurcation parameter that controls the corre
tion of the sequence.b is the deterministic perturbation
which is set asb510212 only for B>2 in this paper. For
numerical simulationsb is used in order to overcome th
difficulty that comes from nonstationarity. Stationarity is r
covered by perturbation although the essential property
mains invariant for a long timei , i b , where i b5(B
21)21(2b)(12B)/B @43#. Moreover, the sequence$Xi% can
be symbolized by the following rule:

0<Xi,1/2→Yi52
e

2
,

02620
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1/2<Xi,1→Yi5
e

2
, ~3.2!

where thee is the strength of the fluctuation.
Another symbolic sequence is given by the followin

rule:

0<Xi,1/2→Yi5e,
~3.3!

1/2<Xi,1→Yi50.

It is analytically shown that the correlation function of th
symbolic sequence$Yi% decreases as a power law for largen
@44#,

^Yn11Yn&;n2(22B)/(B21). ~3.4!

It is worth noting that whenB,2 a normalizable station
ary distribution~invariant measure! exists; on the other hand
whenB>2 the sequence becomes nonstationary and a
malizable measure does not exist whenb50 @44#. This prop-
erty of the sequence strongly affects the convergence of
Lyapunov exponents for the system. As we will mention
Sec. IV, we numerically judged the converged Lyapun
exponents even for the nonstationary region@42#. However,
we restrict our numerical computation withinB<2.5, be-
cause it is difficult for large values ofB to detect the conver-
gent Lyapunov exponents. See Ref.@42# for more details of
the convergence. We confirmed that the mean value
variance of the sequence we used in this paper are the s
regardless of the parameterB even in the nonstationary re
gion.

It was shown that the result does not depend qualitativ
on the difference between$Xi% and $Yi% in form A in our
previous report@42#. We mainly use symbolic sequences th
take only two values, 0 ore ~type 1! and2e/2 or e/2 ~type
2!. When we use PRMs with form A and the symbolizatio
rule of type 1, we refer to it as case A1. In a similar way, w
use case B2 when matrix form B and the symbolization r
of type 2 are used.

In the case of form A, we generate the sequence of ma
elements as$v j j 11

(n) 5Yn , n51,2, . . .%, by the sequence o
the modified Bernoulli map$Yn% @43–45#, where the differ-
ent initial conditions of the map are used for each ofN in-
dependent elements of an initial matrixH(0). In the case of
form B, N(N11)/2 independent matrix elements of the sym
metric matrix H(n) are generated by$H i j

(n)5H i j
(n)5Yn , n

51,2, . . .%, where the initial conditions are independent oi
and j. In the case of form C, theN independent matrix ele
ments are generated by$Vn j5Yn ,n51,2, . . .%, where the
initial conditions are independent ofj.

IV. LYAPUNOV EXPONENTS

In this section we give a definition of Lyapunov exp
nents that is used in Secs. V and VI, and also give lo
Lyapunov exponents, which are used in Sec. VII. We defi
local Lyapunov exponents$@l i #t ,i 51, . . . ,2N% for a finite
time intervalt (5mdt) by means of the time evolution o
eigenvalues of the real symmetric symplectic mat
3-4
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Ct5Z(0)†P(t)†P(t)Z(0) as follows:

@l i #t5
1

2t
@ logs i~Ct!#, i 51, . . . ,2N, ~4.1!

where s i(•) denotes thei th eigenvalue. We set the expo
nents in decreasing order.

Instead of the Gram-Schmidt orthogonalization~GSO!
method, we used the Householder QR-based method in o
to calculate the Lyapunov exponents, which is better in
curacy and speed of numerical calculation than the G
method@53,54#. We also got local Lyapunov exponents b
direct calculation of the singular values of the matrix pro
ucts.

V. LYAPUNOV SPECTRA

In this section, we investigate the Lyapunov expone
L(x)5l i and the scaled Lyapunov exponentsLS(x)
5l i /l1 as a function ofx([ i /N) for cases A1 and A2. We
restrict our numerical computation within the caseB<2.5,
because it is difficult to detect numerically converge
Lyapunov exponents for large values ofB. ~See Refs.
@47,42#.! We confirmed that the form of the Lyapunov spe
tra for N516 is almost the same as for the larger dime
sional matrix (N532) in Fig. 1. Accordingly, we mainly use
N516 in order to reduce the computation time. The conv
gence of the Lyapunov exponents as a function of timem has
been numerically confirmed for matrices in all cases we
vestigated.

FIG. 1. Lyapunov spectra for matrix dimensionsN
58, 16, 32 in ~a! case A1 and~b! case A2 withdt51 and e
50.05.
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A. Case A1

Recall that in the RMA without correlation the scale
Lyapunov spectra show the formLS(x)512x in some mod-
els @28#. Figure 2 shows Lyapunov spectraL(x) and scaled
Lyapunov spectra for various parametersB at e55 anddt
50.01 in case A1. It follows that the effect of the correlatio
appears in the shape of the Lyapunov spectrum. It is sho
in Fig. 2~b! that the shape of the spectrum gradually devia
from the linear formLS(x);12x with increasing correla-
tion. In the stationary region (B,2), the form of the
Lyapunov spectrum does not greatly depend on the stre
of the correlation and it is approximately linear, especia
aroundx;1. As B increases all of the Lyapunov exponen
increase. This behavior means that the correlation enha
all of the indices of instability. Similar phenomena concer
ing the MLE have been observed in a one-dimensional
ordered system with correlated diagonal disorder@16#.

Moreover, in the nonstationary region (B>2) the MLE
l1 increases with increase of the correlation parameterB. On
the other hand, the smaller Lyapunov expone
lN21 ,lN22 , . . . , with values near zero (l i;0), begin to
decrease whenB becomes relatively large~beyond 2!. The
change of shape ofL(x) with increasingB is quite interest-
ing. It seems that the correlation does not make all of
Lyapunov exponents smaller monotonically, and allows
smaller Lyapunov exponents in the vicinity of zero decrea
and approach zero.

B. Case A2

Figure 3 shows Lyapunov spectraL(x) and scaled
Lyapunov spectraLS(x) for various parametersB at fixed

FIG. 2. ~a! Lyapunov spectraL(x)5l i and~b! scaled Lyapunov
spectraLS(x)5l i /l1 as a function ofx5 i /N in case A1 for some
B’s with dt50.01 ande55.
3-5
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HIROAKI YAMADA AND TSUNEYASU OKABE PHYSICAL REVIEW E 63 026203
strength of the fluctuatione55 anddt50.01 in case A2. In
the region 1,B,3/2 the functional forms of the scale
Lyapunov spectra are almost the same, and similar to
observed in the RMA, i.e., linear inx, independent of the
correlation of the sequence. On the other hand, in the re
B.3/2 and in the nonstationary region (B>2) the func-
tional form of the scaled Lyapunov spectra has a charac
istic form depending onB, and the form gradually ap
proaches a hyperbolic function with increase of t
correlation strengthB.

C. Summary

In the stationary region, the enhancement of all
Lyapunov exponents is related to the correlation of the
quence. A deviation from linear behavior aroundl1 has been
reported in some dynamical systems with strong correlat
Unfortunately, we are not able to give an analytical result
the correlation-enhanced instability observed in cases
and A2.

The behavior of the positive and smallest Lyapunov
ponent observed for the nonstationary region in cases A1
A2 is very important when we consider this phenomenon
the context of a dynamical system with correlation. It su
gests that a few variables contribute to the instability o
short time scale, and the others yield a very slow dynam
We confirmed that in cases B1 and B2 similar results
cases A1 and A2 could be obtained.

Moreover, when we consider the Lyapunov spectra fr
the point of view of the localization problem, the phenome
are also interesting. The positive and smallest Lyapunov
ponent determines the localization length in a disordered

FIG. 3. ~a! Lyapunov spectraL(x)5l i and~b! scaled Lyapunov
spectraLS(x)5l i /l1 as a function ofx5 i /N in case A2 for some
B’s with dt50.01 ande55.
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tem. We reconsider the correlation effect on the localizat
length in Secs. VIII and IX. We can expect that one impo
tant perspective on interesting phenomena can be obtaine
analyzing the evolution of the Lyapunov vectors.

VI. SCALING FORM OF THE MLE

In this section we present thee dependence of the MLE
l1(e) in the cases A1 and A2. In the RMA, the scaling for

l1~e!;eb ~6.1!

with b52/3 for ^v i i 11&Þ0 and b51/2 for ^v i i 11&50,
where ^¯& means the average of i.i.d. variables, has be
derived by some analytical methods@11,12,3#.

A. Case A1

The e dependence of the MLE for case A1 withdt
50.01 is shown in Fig. 4. We compare the results for t
d-correlated case with those obtained from the modified B
noulli map. WhenB51.1 a clear scaling rule,l1}e1, can be
observed. The slope of thee dependence decreases and a
proaches one-half asB increases. As a result, a similar sca
ing law to Eq.~6.1! with 1/2<b<1 is observed forB in the
stationary regionB,2. It is also found that thee depen-
dence gradually deviates from linear behavior and shows
creasing slope in the relatively largee region.

On the other hand, in the nonstationary region (B.2) the
MLE l1(e) shows a different type of scalingl1(e);eb, in
which the slopeb gradually decreases and simultaneou

FIG. 4. Log-log plot of the fluctuation strength dependence
the MLE l1(e) for someB’s in case A1 withdt50.01. The lines
denotel1}e1 andl1}e1/2.
3-6
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the value of the MLE decreases for increasingB.
We can guess that the order of the MLE withB will be

changed at smalle, based on extrapolation of the scalin
form in Fig. 4~b!. It is worth noting that we can say tha
correlation enhances the instability only at relatively sm
values ofe.

B. Case A2

Figure 5 shows the fluctuation strength dependence of
MLE l1(e) in case A2 withdt50.01. As seen in case A1,
seems that on a logarithmic scale thee dependence show
good linear approximation and the slope slightly decrease
the correlation increases in the stationary region (B,2). As
we might expect, on a logarithmic scale, a clear scaling
l;e2/3, which is similar to the case of the RMA, is observ
for B51.1. This is a different feature of the case A2 from t
case A1. Note that the sequence generated byB51.0, i.e.,
the Bernoulli map, has the same KS entropy mathematic
as random coin tossing@46#.

As a result, we observed clear scaling lawsl1(e);eb

depending on the correlation, in which the exponentb takes
intermediate values between 2/3 and 1/2 in the station
region. On the other hand, in the nonstationary regionB
.2) the correlation does not affect the scaling form of t
MLE l1 strongly. In case B2 almost the same phenomen
in case A2 were observed as the correlation increases.

VII. DISTRIBUTION OF LOCAL LYAPUNOV EXPONENTS

When a product of a finite numberm of matrices is con-
sidered, the corresponding local Lyapunov exponents

FIG. 5. Log-log plot of the fluctuation strength dependence
the MLE l1(e) for someB’s in case A2 withdt50.01. The lines
denotel1}e2/3 andl1}e1/2.
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distributed over the initial conditions. In this section, we i
vestigate the probability distribution of local Lyapunov e
ponents for cases A1, A2, B1, and B2. We pay particu
attention to the change of location of peaks and the con
gence properties of the probability distribution. Falcio
et al. investigated the convergence of the probability dis
bution of the MLE in a high-dimensional symplectic ma
@55#. The coupling strengthe dependence of the convergen
with respect tom was reported.

A. Case A1 and B1: Maximal Lyapunov exponent

In Figs. 6 and 7, probability distributions of local MLE
P(@l1#t) for some typicalt @5dtm, where them is the
interval used to decide the local Lyapunov exponents, i.em
is the number of matrices in Eq.~2.1!#, are shown for~a! B
51.3, ~b! B51.7, and~c! B52.0 for cases A1 and B1, re
spectively. The ensemble size is 40 000, i.e., the probab
distributions are made from an ensemble of 40 000 differ
initial conditions for each independent matrix element.

It is found that in the case ofB51.3 the form of the
distribution is Gaussian independent of the valuem. Note
that in the case of random symplectic matrix products
probability distribution form for Lyapunov exponentsl i has

f

FIG. 6. Probability distribution of local maximal Lyapunov ex
ponentsP(@l1#t) for some typicalt (5dtm) at ~a! B51.3, ~b!
B51.7, and~c! B52.0 in case A1 withdt50.01 ande55.
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HIROAKI YAMADA AND TSUNEYASU OKABE PHYSICAL REVIEW E 63 026203
been analytically derived by some methods, such as pe
bation@8#, functional equations@56,57#, and so on@24#. Ow-
ing to the CLT the fluctuation is generally well approximat
by a Gaussian distribution ind-correlated PRMs. As a resul
the convergence of the probability distribution obeyss
;m21/2 with respect tom.

As B51.3 is relatively small, the statistical properties
the sequence are similar to those ofd-correlated case. On th
other hand, as we can see in Fig. 6~c! and Fig. 7~c! for larger
values ofB the distribution shows anomalous structure es
cially at smallm. Some sharp peaks exist in the probabil
distribution with a broad peak in the center, and asm in-
creases the sharp peak is absorbed in the broad peak
disappears. The origin of the sharp peak at smalll1 is due to
products of identical matrices generated by the almost p
odic sequence.

In Fig. 8 them dependence of the standard deviations of
the distribution is shown in order to estimate the speed
convergence of the distribution with regard to increase ofm.
The distribution converges with increasingm with a drift of
the mean valueŝl1&m . The speed of convergence of th
m-dependent mean value becomes slower asB becomes
larger.

FIG. 7. Probability distribution of local maximal Lyapunov ex
ponentsP(@l1#t) for some typicalt (5dtm) at ~a! B51.3, ~b!
B51.7, and~c! B52.0 in case B1 withdt50.001 ande55.
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B. Case A2 and B2: Maximal Lyapunov exponent

In Fig. 9, the distributions of local MLEsP(@l1#t) for
B51.2, B51.5, andB51.8 in the case A2 are shown. Th
spiky peaks on the broad distribution at smallm are due to
the small ensemble size. When we pay attention to the glo
feature of the distribution form, the peak structure and
convergence properties of the probability distribution a
similar to the ones obtained in cases A1 and B1. In parti
lar, for caseB51.9 a multipeak structure is clearly observe
and the shape of the probability distributions is differe
from Gaussian. But in order to confirm the details of t
functional form of the distribution, a much larger ensemb
is necessary in cases of larger parameterB. We observed that
the distribution of the local MLEs in case B2 is almo
Gaussian even forB51.8.

Figure 10 shows them dependence of the standard dev
tion of the probability distribution of MLEs in cases A2 an
B2. The qualitative structure of the convergence is similar
that for A1 and B1. We try to characterize the slow conv

FIG. 8. Log-log plot of standard deviation of the probabili
distribution as a function of time intervalm in case~a! A1 and ~b!
B1. The lines are the linear least-squares fits for them dependence.
3-8
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gence for largeB. In Fig. 11 we show the convergence ind
a i(B) of the distribution of the local Lyapunov exponent
which is defined by the change of the standard deviation

s5A^~Dl i !
2&V;m2a i (B), ~7.1!

where^•••&V means the ensemble average, and thei th ex-
ponent a i corresponds to distribution of thei th local
Lyapunov exponentl i . We used linear least-squares fittin
for the data in Figs. 8 and 10. The indexa1 decreases with
increase of the parameterB. The slow convergence in th
distribution of the MLEs is based on anomalous statisti
properties of the modified Bernoulli map. In the next subs
tion we investigate the other Lyapunov exponents in ca
A2 and B2.

C. Case A2 and B2: The other Lyapunov exponents

In Figs. 12 and 13, distributions of the local seventh a
fifteenth largest Lyapunov exponentsP(@l7#t) and
P(@l15#t) for case A2 are shown. The distributions are n
smooth, and in some cases the singular-peak structur
clearly observed. In particular, the narrow peak on the
side of the main broad peak grows gradually with increase
m in case A2 withB51.5. On the other hand, Fig. 13~c!
shows that the sharp peaks on the right side of the br

FIG. 9. Probability distribution of local maximal Lyapunov ex
ponentsP(@l1#t) for some typicalt (5dtm) at ~a! B51.2, ~b!
B51.5, and~c! B51.8 in case A2 withdt50.01 ande55.
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peak of the distributionP(@l15#t) gradually disappear with
increase of them. In case A2 the whole structure of th
convergence is similar to that for case A1. Figure 14 sho
the probability distribution of the local fifteenth large
Lyapunov exponentsP(@l15#t) for case B2. Unlike the othe
cases, a double-peak structure is not observed even for l
values ofB at smallm. Figure 14~c! shows that in the case
B52.3 the probability distribution shape does not change
increase ofm.

Figures 15 and 16 show them dependence of the standa
deviation of the distribution of some Lyapunov exponents
some cases. A linearm dependence is observed for som
cases in case B2. In Fig. 17 the indicesa7(B) anda15(B) of
the convergence as a functionsB, estimated by least-square
fitting using Eq.~7.1! for the standard deviation of the dis
tribution, are shown. The case ofB51.1 obeys the CLT, i.e.,
a.0.5 approximately. AsB increasesa decreases becaus
of the correlation effect. Accordingly, the correlatio
strongly affects the convergence properties of the probab
distribution function of not only local MLEs but also th
other local Lyapunov exponents.

FIG. 10. Log-log plot of standard deviation of the probabili
distribution as a function of time intervalm in case~a! A2 and ~b!
B2. The lines are the linear least-squares fits for them dependence.
3-9
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We recall that similar features for the probability distrib
tion of Lyapunov exponents exist in other systems. When
investigated the distribution of Lyapunov exponents in
32 PRMs with correlation in the problem of a on
dimensional disordered system, a double-peak struc

FIG. 11. The indexa1 as a function ofB, estimated by the
convergence of the standard deviation in cases A1~open circles!
and B2~open squares!.

FIG. 12. Probability distribution of local maximal Lyapuno
exponentsP(@l7#t) for some typicalt (5dtm) at ~a! B51.2, ~b!
B51.5, and~c! B51.8 in case A2 withdt50.01 ande55.
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could be clearly observed in the distribution, and the dis
bution form had slow convergence for 3/2<B,2 @36#.

In a d-correlated disordered system, the differential eq
tion obeyed by the probability distribution function of con
ductance has been derived@8,59,60#. As a result, the conver
gence of the distribution obeys a standard CLT for the lim
of large system size. However, correlation effects obey
power-law decay in the Lyapunov exponents and the sca
property ofl i(e) are still open problems.

VIII. CASE C2

In this section, we show some numerical results for
Lyapunov spectra, scaling form of the MLE, and conve
gence properties of the distribution of local MLEs in ca
C2.

Figure 18 shows the Lyapunov spectraL(x) for someB’s
in case C2 ate50.01 andE50. The energy of the electron
corresponds to the band center of the two-dimensional
tem. In the figure ad-correlated case with uniform distribu
tion in @20.01,0.01# is added as a reference. In comparis
with the d-correlated case all of the Lyapunov exponen
decrease. The structure of theB dependence is similar to tha
in the case A2 except that some Lyapunov exponents
zero regardless of the strength of the correlation. The sec
largest Lyapunov exponentl2 determines the localization

FIG. 13. Probability distribution of local maximal Lyapuno
exponentsP(@l15#t) for some typicalt (5dtm) at ~a! B51.2, ~b!
B51.5, and~c! B51.8 in case A2 withdt50.01 ande55.
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length as shown in Fig. 18 because it does not van
Roughly speaking, it seems thatl2 decreases as the correl
tion strength increases.

Figure 19 shows the fluctuation strength dependence
the MLE l1(e) for someB’s in case C2. Ase increases, the
MLE changes from some positive value to another posit
value at some critical valueec that depends on the correla
tion parameterB. The largerec becomes, the larger is param
eterB. In other words, this system has a transition. The
lation between the existence of the transition and
localization problem is very interesting. The localizatio
property is strongly related to a singularity in the density
states@16#. Accordingly, to make it clearer, further invest
gations are necessary in a wider parameter range. The re
will be reported elsewhere@58#.

IX. SUMMARY AND DISCUSSION

We have systematically investigated the Lyapunov sp
tra, scaling form of the MLE, and convergence properties
the probability distribution of local MLEs in correlate
PRMs with long-range correlation, which is generated b
modified Bernoulli map. The results we obtained in t
present investigation are summarized as follows.

~1! In cases A1 and A2, the forms of the Lyapunov spe

FIG. 14. Probability distribution of local maximal Lyapuno
exponentsP(@l15#t) for some typicalt (5dtm) at ~a! B51.1, ~b!
B51.9, and~c! B52.3 in case B2 withdt50.01 ande55.
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tra for the correlated cases are different from that obtai
from d-correlated random matrices. In the stationary reg
(B,2) all of the Lyapunov exponents$l i% increase with
increase of the correlation parameterB. On the other hand
the value of the smaller Lyapunov exponents aroundx;1
begins to decrease whenB becomes relatively large~beyond
2! in the nonstationary region (B>2).

~2! In case A1 the slope of thee dependence decrease
from unity and approaches one-half asB increases. As a
result, similar scaling laws to Eq.~6.1! with 1/2<b<1 are
observed for anyB in the stationary regionB,2.

~3! In case A2, thee dependencel1(e) also shows a good
linear approximation on the logarithmic scale and the slo
decreases as the correlation increases in the stationary re
(B,2). In the case ofB>2, a clear scaling law withb51 is
observed, which is different from those derived from t
RMA.

~4! In cases A1 and A2, for larger values ofB the prob-
ability distributions show multipeak structures especially
small m, where a sharp peak corresponds to the almost p
odic sequence generated by the map. The probability di
butions converge with increasingm with drift of the mean

FIG. 15. Log-log plot of standard deviation of the probabili
distribution ~a! P(@l7#t) and ~b! P(@l15#t) as a function of time
interval m in case A2.
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value. Qualitatively, the speed of convergence becom
slower asB becomes larger.

~5! In cases A2 and B2, the distribution of local maxim
Lyapunov exponentsP(@l1#t) shows the multipeak struc
ture also. The shape of the distributions is different fro
Gaussian for largeB. The convergence indexa i(B), which
characterizes the slow convergence of the probability dis
bution, becomes small with increase ofB.

~6! In cases A2 and B2, the distribution forms for th
local seventh and fifteenth largest Lyapunov expone
P(@l7#t) and P(@l15#t) show slow convergence, i.e.,a7
and a15 are less than one-half, which would correspond
the d-correlated case. Correlation strongly affects the c
vergence properties of the distribution functions of not o
the local MLEs but also the other local Lyapunov exponen

~7! In other cases, the Lyapunov spectra, scaling form
the MLE, and convergence properties of the probability d
tribution of local MLEs have also been investigated, a
some similar features to those of cases A1 and A2 have b
observed.

We would like to mention some physical meaning in t
results. We observed deviation from the linear form

FIG. 16. Log-log plot of standard deviation of the probabili
distribution ~a! P(@l7#t) and ~b! P(@l15#t) as a function of time
interval m in case B2. The lines are the linear least-squares fits
the m dependence.
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Lyapunov spectraL(x) and LS(x) and squeezing of the
Lyapunov spectra nearx;0 as the correlation of the se
quence increases. If we express the situation with words
dynamical system, this suggests that a few variables con
ute to chaotic motion on a short time scale, while all t
others yield a very slow dynamics. In other words, the fi
chaotic behavior is confined to a low-dimensional manifo

There is controversy about exponential localization
two-dimensional disordered systems@61#. The simple scaling
theory concludes that in the two-dimensional disordered s
tem almost all of the eigenstates are exponentially locali
@62#. However, some experimental and theoretical repo
suggest the existence of nonexponentially localized st
when the strength of disorder is small@63,64#. The relation
between the existence of the ‘‘pseudo mobility edge,’’ whi

FIG. 17. The indexa7 ~open circles! anda15 ~open squares! as
a function ofB, estimated from convergence of the standard dev
tion in case B2.

FIG. 18. Lyapunov spectraL(x)5l i as a function ofx5 i /N in
case C2 for someB’s with e50.01. A d-correlated case with uni-
form distribution in@20.01,0.01# is added as a reference.

r
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divides power-law localizations from exponential ones, a
the Lyapunov spectra and thee dependence of the MLE in
case C2 is very interesting. Even in disordered electro
system correlations are often present and may play an im
tant role. It can be said that we confirmed the effects of
spatial correlation on localization length of the wave fun
tion.

The positive and smallest Lyapunov exponents co
spond to the inverse of the localization length. The corre
tion of the matrix sequence, in general, works to enha
delocalization. As expected, it was found that the presenc
correlation between impurities in the Anderson model le
to an enhancement of delocalization at the band center
ergy. To make clearer the localization property, further s
tematic investigations are necessary for larger random m
ces.

Unfortunately, at the present stage we have not succee

FIG. 19. Log-log plot of the fluctuation strength dependence
the MLE l1(e) for someB’s in case C2 withe50.01.
h
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in analytical derivation of the interesting phenomena cau
by correlation. We can construct other models for the PR
with correlation by using a sequence$Xi% generated by a
modified Bernoulli map. First we prepare two kinds of sym
plectic matricesA andB, for which the matrix elements ar
set as in forms A, B, or C. The correlated products of t
matrices) i 51

m Mi are created by the rule

0<Xi,1/2→Mi5A,
~9.1!

1/2<Xi,1→Mi5B.

Then analytical treatment for the Lyapunov exponents w
be easier than for those used in this paper, because th
quence can be well approximated by a renewal process@43#.
We will try to do this elsewhere@58#.

Further systematic investigation of the relation betwe
the Lyapunov exponents and matrix form and/or correlat
in the products is necessary too. Moreover, there are o
interesting problems concerning the Lyapunov exponent
the products of matrices with correlation, such as the eff
of correlation between matrix elements on Lyapunov ex
nents, which has not been included in the present stu
Many problems are open for future study.

ACKNOWLEDGMENTS

We would like to thank Dr. Y. Y. Yamaguchi and Profe
sor T. Konishi for discussions. We also thank Professor
Goda for useful comments and encouragement. H.Y. wo
like to thank Professor M. Wilkinson for his hospitality du
ing a stay in the University of Strathclyde. Numerical com
putation in this work was carried out on the computer syst
of the National Institute of Materials and Chemical Resear

f

@1# P. Bougerol and J. Lacroix,Products of Random Matrices wit
Applications to Schrodinger Operators~Birkhauser, Boston,
1985!, and references therein.

@2# Random Matrices and Their Applications, edited by J. E. Kas-
ten and C. M. Newman~American Mathematical Society
Providence, RI, 1986!, and references therein.

@3# A. Crisanti, G. Paladin, and A. Vulpiani,Products of Random
Matrices in Statistical Physics~Springer-Verlag, Berlin, 1993!,
and references therein.

@4# H. Matsuda and K. Ishii, Prog. Theor. Phys.45, 56 ~1970!.
@5# K. Ishii, Prog. Theor. Phys.53, 77 ~1973!.
@6# T. M. Nieuwenhuizen and J. M. Luck, J. Stat. Phys.41, 745

~1985!.
@7# P. Erdos and C. R. Herndon, Adv. Phys.31, 429 ~1981!.
@8# P. A. Mello, P. Pereyra, and K. Kumar, Ann. Phys.~N.Y.! 181,

290 ~1988!.
@9# B. M. MacCoy and T. T. Wu, Phys. Rev.176, 631 ~1968!.

@10# A. Crisanti, G. Paladin, M. Serva, and A. Vulpiani, Phys. Re
E 49, R953~1994!.

@11# G. Benettin, Physica D13, 211 ~1984!.
@12# G. Paladin and A. Vulpiani, J. Phys. A19, 1881~1986!.
@13# R. Livi, A. Politi, and S. Ruffo, J. Phys. A19, 2033~1986!.
@14# R. Livi, A. Politi, S. Ruffo, and A. Vulpiani, J. Stat. Phys.46,

147 ~1987!.
.

@15# G. Paladin and A. Vulpiani, Phys. Rep.156, 147 ~1987!.
@16# A. Crisanti, G. Paladin, and A. Vulpiani, Phys. Rev. A39,

6491 ~1989!.
@17# H. A. Posch and W. G. Hoover, Phys. Rev. A38, 473 ~1988!.
@18# G. Seeley and T. Keyes, J. Chem. Phys.91, 5581~1989!.
@19# S. Sastry, Phys. Rev. Lett.76, 3738~1996!.
@20# J. Cook and B. Derrida, J. Stat. Phys.61, 961 ~1990!.
@21# H. Furstenberg, Trans. Am. Math. Soc.108, 377 ~1963!.
@22# V. I. Oseledec, Trans. Moscow Math. Soc.19, 197 ~1968!.
@23# V. N. Tutubalin, Theor. Probab. Appl.13, 65 ~1968!.
@24# A. D. Virster, Theor. Probab. Appl.15, 667 ~1970!.
@25# H. Furstenberg and H. Kesten, Ann. Math. Stat.31, 457

~1960!.
@26# A. J. O’Connor, Commun. Math. Phys.45, 63 ~1975!.
@27# P. R. Mello, J. Math. Phys.27, 2876~1986!.
@28# C. M. Newman, Commun. Math. Phys.103, 121 ~1986!.
@29# J. P. Eckmann and C. E. Wayne, J. Stat. Phys.50, 853~1988!.
@30# G. J. Kissel, Phys. Rev. A44, 1008~1991!.
@31# K. Fukamachi, Europhys. Lett.26, 26 ~1994!.
@32# T. Okabe and H. Yamada, Chaos, Solitons and Fractals9,

1755 ~1998!.
@33# T. Konishi and K. Kaneko, J. Phys. A25, 6283~1992!.
@34# K. Kaneko and T. Konishi, Physica D71, 146 ~1994!.
3-13



a

ys

ica

s.

B

V.

HIROAKI YAMADA AND TSUNEYASU OKABE PHYSICAL REVIEW E 63 026203
@35# C. Amitrano and R. S. Berry, Phys. Rev. Lett.68, 729 ~1992!;
Phys. Rev. E47, 3158~1993!.

@36# H. Yamada, M. Goda, and Y. Aizawa, J. Phys.: Condens. M
ter 3, 10 043~1991!.

@37# F. Cecconi and A. Vulpiani, Phys. Lett. A201, 326 ~1995!.
@38# M. J. de Oliver and A. Petri, Phys. Rev. E53, 2960~1996!.
@39# M. Goda, Prog. Theor. Phys.62, 608 ~1979!.
@40# A. Lahiri and L. Nilsson, Chem. Phys. Lett.311, 459 ~1999!.
@41# Y. Y. Yamaguchi, J. Phys. A31, 195 ~1998!.
@42# T. Okabe and H. Yamada, Prog. Theor. Phys. Suppl.138, 615

~2000!.
@43# Y. Aizawa, Prog. Theor. Phys.72, 659 ~1984!.
@44# Y. Aizawa, C. Murakami, and T. Kohyama, Prog. Theor. Ph

Suppl.79, 96 ~1984!.
@45# K. Tanaka and Y. Aizawa, Prog. Theor. Phys.90, 547 ~1993!.
@46# A. J. Lichtenberg and M. A. Lieberman,Regular and Chaotic

Dynamics~Springer-Verlag, New York, 1992!.
@47# T. Okabe and H. Yamada, Int. J. Mod. Phys. B12, 901~1998!;

Mod. Phys. Lett. B12, 615 ~1998!.
@48# H.-O. Canmesin and Y. Fan, J. Phys. A23, 3613~1990!.
@49# J. L. Pichard and G. Andre, Europhys. Lett.2, 477 ~1986!.
@50# B. Derrida, K. Mecheri, and J. L. Pichard, J. Phys.~Paris! 48,
02620
t-

.

733 ~1987!.
@51# P. Markos and B. Kramer, Philos. Mag. B68, 357 ~1993!.
@52# P. Markos, J. Stat. Phys.70, 899 ~1993!.
@53# K. Geist, U. Parlitz, and W. Lauterborn, Prog. Theor. Phys.83,

875 ~1990!.
@54# H. F. Bremen, F. E. Udwadia, and W. Proskurowski, Phys

D 101, 1 ~1997!.
@55# M. Falcioni, U. M. B. Marconi, and A. Vulpiani, Phys. Rev. A

44, 2263~1991!.
@56# A. Gamba and I. V. Kolokolov, J. Stat. Phys.85, 489 ~1996!.
@57# X. R. Wang, J. Phys. A29, 3053~1996!.
@58# T. Okabe and H. Yamada~unpublished!.
@59# C. W. J. Beenakker, Rev. Mod. Phys.69, 731 ~1997!.
@60# T. Guhr, A. M. Groeling, and H. A. Weidenmueller, Phy

Rep.299, 189 ~1998!.
@61# M. Goda, M. Ya. Azbel, and H. Yamada, Int. J. Mod. Phys.

13, 2705~1999!.
@62# E. Abrahams, P. W. Anderson, D. C. Licciadello, and T.

Ramakrishnan, Phys. Rev. Lett.42, 673 ~1979!.
@63# M. Ya. Azbel, Phys. Rev. B26, 4735~1982!.
@64# N. F. Mott and M. Kaveh, Adv. Phys.34, 329 ~1985!.
3-14


